More Than Sick of Salt

All Posts in Category: COVID-19

Coronavirus Induces Oxidative Stress Leading to Autonomic Dysfunction – Part 3

Click here to download this post

Notes: This is the third in a series of 5 blog posts about COVID-19 and Autonomic Dysfunction.  This a pre-publication release that will be featured in a major medical journal.

Coronavirus Induces Oxidative Stress Leading to Autonomic Dysfunction Often With Delayed Symptom Onset

 

Heather L. Bloom, MD1 and Joseph Colombo, PhD, DNM, DHS2

  1. Electrophysiology, Atlanta Veterans Affairs Medical Center and Emory University Medical School, Atlanta, GA bloom@gmail.com
  2. Parasympathetic & Sympathetic Nervous System Consultant, Franklin Cardiovascular Associates, PA & Autonomic Dysfunction and POTS Center, Sewell, NJ, and Senior Medical Director & CTO, Physio PS, Inc., Atlanta, GA, dovetech@erols.com

 

Correspondence should be addressed to Dr. Colombo, dovetech@erols.com

 

 

COMMON P&S DYSFUNCTIONS CAUSED BY OXIDATIVE STRESS

The ability to simultaneously and (mathematically) independently measure P&S activity under all conditions enables more information and additional abnormal responses [[i]] that have clinical bearing on Dysautonomia symptoms and their therapy.  For example a normal postural change or stand response is depicted in Figure 1, Graph A.  First the Parasympathetics decrease, potentiating and minimizing the Sympathetic reaction required and then (second) the Sympathetics increase.  Lightheadedness due to Dysautonomia is arguably the most debilitating of Dysautonomia symptoms [[ii],[iii]] and results from abnormal stand responses (the rest of Figure 1, and discussed below).  Note multiple Dysautonomias may occur simultaneously.

  • Challenge Parasympathetic Excess (PE) is an abnormal increase in average Parasympathetic activity during a Sympathetic stimulus (g., stress or exercise), including stand (Figure 1, Graph C). Often the PE forces a secondary, excessive Sympathetic response (Sympathetic Excess or SE) to such stimuli (Figure 1, Graph E).  Typically, this is measured as high HR or BP, and treatment responses are often unexpected.  Often the HR or BP increases or becomes difficult to manage.  This is due to the SE being a secondary response, and possibly compensatory for the underlying Sympathetic Withdrawal (SW) masked by the PE [i].  PE affects brain profusion by effecting circulation throughout the cardiovascular system.  Figure 1, Graph D, shows an example of PE with SW (a description of SW is below). [i]
  • Head-up postural change (stand) SE (Figure 1, Graph F) is a beta-adrenergic response and is associated with (pre-clinical) Syncope. The Sympathetic response to stand is compared with two other responses:  1) the average resting baseline response and 2) peak (instantaneous) Valsalva response.  For the resting response (1), it is well known that the stand Sympathetic response should be higher than at rest, but not too high.  The normal range is a 10% to 500% increase over the resting response [[iv],[v],[vi]].  The responses depicted in Figure 1 are average responses over the time period of the stimulus.  Sometimes the clinical indications may be averaged out and the instantaneous P&S responses need to be assessed (see Figure 2), such as in comparison with the Valsalva response (2).  SE may be documented as a peak Sympathetic response to standing that is comparable to (Figure 2, Graph C), or greater than the peak Sympathetic response to Valsalva (Figure 2, Graph B).  Of course this makes no sense, physiologically.  The stand Sympathetic response should be significantly lower (< 1/3) than the Sympathetic response to a series of short Valsalva maneuvers (Figure 2, Graph A) which are known to be very significant Sympathetic challenges.  (Note:  Valsalva maneuvers > 20 seconds are well-known, and significant, Parasympathetic challenges.  Valsalva maneuvers < 15 seconds are Sympathetic challenges.)  Stand SE is a symptom of poor brain profusion due to insufficient circulation caused by inappropriate autonomic control of the heart (Vasovagal or Neurogenic Syncope) or due to the heart itself (Cardiogenic Syncope). [i]
  • Head-up postural change (stand) Sympathetic Withdrawal (SW, Figure 1, Graph B) is an alpha-adrenergic response and is associated with (pre-clinical) orthostatic dysfunction. Any average decrease in Sympathetic activity with standing, as compared with rest is abnormal and considered SW.  SW may be accompanied by abnormal BP or abnormal HR responses (g., Orthostatic Hypotension or POTS, respectively).  Both PE and stand SE may mask SW.  In these cases a weak or abnormal BP response is often still recorded, or treatment of the PE will unmask SW.  SW may also present with PE (Figure 1, Graph D).  SW affects brain profusion by causing blood volume to shift to the lower extremities, reducing cardiac output and therefore, circulation to the brain.  This may lead to hypertension (high systolic BP) as a compensatory mechanism to prevent brain hypoperfusion.  It may also be associated with poor cardiac perfusion (low diastolic BP) and, if prolonged, may lead to heart failure. [i]
  • Autonomically mediated cardiac arrhythmia (see Figure 3 for an example), including Sinus Arrhythmia, is contra-indicated for heart beat interval analyses, and therefore, contra-indicated for most ANS monitors or measurement devices. With the addition of Respiratory Activity signal analyses to the heart beat interval analyses, more information is available to measure the P&S signals in the “noise” of the arrhythmia.  The typical arrhythmia that is associated with P&S dysfunction is Sinus Arrhythmia, which may be described as a normal EKG waveform (a normal heart beat) that occurs with abnormal timing (due to an abnormal P or S input to the heart).  As a result, autonomically mediated cardiac arrhythmia may be perceived as “skipped-beats” or “rapid-beats” or, in general, palpitations.

 

FIGURES and FIGURE LEGENDS

 

 

 

REFERENCES

_________________

[1] Murray GL.  COVID-19 cardiac complications: Is an easy, safe treatment strategy right under our noses?  J Cardiovasc Dis Diag. 2020; 8:5.  doi: 10.37421/jcdd.2020.8.415.

2 DePace NL, Colombo J.  Autonomic and Mitochondrial Dysfunction in Clinical Diseases:  Diagnostic, Prevention, and Therapy.  Springer Science + Business Media, New York, NY, 2019.

3 Acosta C, DePace NL, DePace NL, Kaczmarski K, Pinales JM, and Colombo J.  Antioxidants effect changes in systemic parasympathetic and sympathetic nervous system responses and improve outcomes.  Cardio Open. 2020; 5(1): 26-36.  doi:  10.33140/COA.05.01.04

4 Colombo J, Arora RR, DePace NL, Vinik AI.  Clinical Autonomic Dysfunction:  Measurement, Indications, Therapies, and Outcomes.  Springer Science + Business Media, New York, NY, 2014.

5 Vinik A, Ziegler D.  Diabetic cardiovascular autonomic neuropathy.  Circulation. 2007; 115: 387-397.

6 Vinik AI, Maser RE, Nakave AA.  Diabetic cardiovascular autonomic nerve dysfunction.  US Endocrine Disease.  2007; Dec: 2-9.

7 Malik, M.  The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use.  Circulation. 1996; 93:1043-1065.

8 Malik, M. and the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use.  European Heart Journal. 1996, 17: 354-381.

9 Akselrod S, Oz O, Greenberg M, Keselbrener L.  Autonomic response to change of posture among normal and mild-hypertensive adults: investigation by time-dependent spectral analysis.  J Auton Nerv Syst. 1997 May 12;64(1):33-43.

10 Piña IL, Di Palo KE, Ventura HO.  Psychopharmacology and Cardiovascular Disease.  JACC. 2018; 71(20): 2346-2359.

11 Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J.  Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities.  J Diabetes Science and Technology.  2008; 2(4): 568-71.

12 DePace NL, Vinik AI, Acosta C and Colombo J.  Oral vasoactive medications:  A Review of Midodrine, Droxidopa, and Pseudoephedrine as Applied to Orthostatic Dysfunction.  NEJM.  2020.  Submitted.

13 Vinik AI, Bloom HL, Colombo J.  Differential effects of adrenergic antagonists (carvedilol vs. metoprolol) on parasympathetic and sympathetic activity:  A comparison of measures.  Heart International. Heart Int. 2014; 9(1): 7-14; DOI: 10.5301/HEART.2014.12495.

14 Bloom HL, Vinik AI, Colombo J.  Differential effects of adrenergic antagonists (carvedilol vs. metoprolol) on parasympathetic and sympathetic activity:  A comparison of clinical results.  Heart Int. 2014 ; 9 (1): 15-21; DOI: 10.5301/HEART.2014.12496.

15 Murray GL and Colombo J.  (R)Alpha Lipoic Acid is a Safe, Effective Pharmacologic Therapy of Chronic Orthostatic Hypotension Associated with Low Sympathetic Tone.  Int J Angiol. In Print, 2018.

 

KEY WORDS

Coronavirus, Parasympathetic, Sympathetic, Oxidative Stress, Antioxidants

 

ABBREVIATIONS

ALA                            Alpha-Lipoic Acid

ANS                            Autonomic Nervous System

CoQ10                        Co-enzyme Q10

COVID-19                  Coronavirus (SARS-CoV-2)

P&S                             Parasympathetic and Sympathetic

PE                               Parasympathetic Excess

POTS                          Postural Orthostatic Tachycardia Syndrome

SE                               Sympathetic Excess

SW                              Sympathetic Withdrawal

[i] Colombo J, Arora RR, DePace NL, Vinik AI.  Clinical Autonomic Dysfunction:  Measurement, Indications, Therapies, and Outcomes.  Springer Science + Business Media, New York, NY, 2014.

[ii] Vinik A, Ziegler D.  Diabetic cardiovascular autonomic neuropathy.  Circulation. 2007; 115: 387-397.

[iii] Vinik AI, Maser RE, Nakave AA.  Diabetic cardiovascular autonomic nerve dysfunction.  US Endocrine Disease.  2007; Dec: 2-9.

[iv] Malik, M.  The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use.  Circulation. 1996; 93:1043-1065.

[v] Malik, M. and the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use.  European Heart Journal. 1996, 17: 354-381.

[vi] Akselrod S, Oz O, Greenberg M, Keselbrener L.  Autonomic response to change of posture among normal and mild-hypertensive adults: investigation by time-dependent spectral analysis.  J Auton Nerv Syst. 1997 May 12;64(1):33-43.

Read More

Coronavirus Induces Oxidative Stress Leading to Autonomic Dysfunction – Part 2

Click here to download this post

Notes: This is the second in a series of 5 blog posts about COVID-19 and Autonomic Dysfunction.  This a pre-publication release that will be featured in a major medical journal.

Coronavirus Induces Oxidative Stress Leading to Autonomic Dysfunction Often With Delayed Symptom Onset

Heather L. Bloom, MD1 and Joseph Colombo, PhD, DNM, DHS2

  1. Electrophysiology, Atlanta Veterans Affairs Medical Center and Emory University Medical School, Atlanta, GA 
  2. Parasympathetic & Sympathetic Nervous System Consultant, Franklin Cardiovascular Associates, PA & Autonomic Dysfunction and POTS Center, Sewell, NJ, and Senior Medical Director & CTO, Physio PS, Inc., Atlanta, GA, dovetech@erols.com

Correspondence should be addressed to Dr. Colombo, dovetech@erols.com

INTRODUCTION

It is generally well known that many chronic and serious pathologies cause an over-production of oxidants, including Reactive Oxygen Species (ROS), Reactive Nitrogen Species (RNS), and many other oxidative molecules. 

What may not be as well-known is the fact that severe acute conditions may also cause an over-production of oxidants.  A recent published review [[i]] highlighted this in COVID-19 patients. 

Many of the other pathogens that cause severe acute diseases are also implicated, including Influenza (like COVID19, a SARS virus) and many other viruses, bacteria like the Borrelia bacterium that causes Lyme Disease, severe physical or physiological stresses or traumas like that which triggers what is known as Fibromyalgia; as well as severe exposures to cold, heat, chemicals, etc., and severe mental or emotional traumas (e.g., PTSD); to name a few.

An over-production of oxidants is known as Oxidative Stress.  While some level of oxidants are necessary for the Immune system as a first-line defense against pathogens, for programmed cell death and other general cellular house-keeping activities, too many oxidants lead to cell and organelle damage, including, damage to Mitochondria. 

The cardiovascular and the nervous systems have the highest numbers of Mitochondria per cell and are therefore more susceptible to Oxidative Stress. 

As the cardiovascular tissue and the Parasympathetic and Sympathetic (P&S) branches of the autonomic nervous systems (ANS) become disordered, P&S dysfunction accelerates cardiovascular disorder and a downward spiral begins; often long before recognized disease symptoms present. 

Further, in addition to collecting oxidants for beneficial use, the Immune system is primarily responsible for balancing the oxidants and antioxidants in the system. With P&S dysfunction this balancing process becomes less effective.

Oxidative Stress-induced P&S Dysfunction may be associated with a huge constellation of symptoms and conditions including  Lightheadedness, fatigue, wild fluctuations in blood pressure, blood glucose, hormone levels, and weight; as well as difficult to describe pain syndromes (including complex regional pain syndromes, or CRPS), excessive symptoms of palpitations without clinical correlation to definitive pathology or seizures, temperature dysregulation (to heat and/or cold and sweat responses), and symptoms of depression and anxiety, ADD/ADHD, exercise intolerance, sex dysfunction, sleep or GI disturbance, cognitive dysfunction or “brain fog”, or frequent headache or migraine.

Given the current high volume of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, or Coronavirus Disease 2019, or COVID-19 virus, or COVID), it will be the exemplar severe acute pathology used as a model of other severe acute pathologies. 

In patients that recover from COVID, the basic model is: 

1) COVID causes Oxidative Stress in most patients who recover;

2) The severity of the resulting Oxidative Stress is debilitating to a sub-population of the patients affected (perhaps 15%, in the case of COVID, [personal clinical observations]);

3) Oxidative Stress damages cell membranes, DNA, and (especially) Mitochondria;

4) as the cells that utilize the most energy (ATP) in the body, nerve and cardiovascular cells are the most susceptible to Oxidative Stress damaged Mitochondrial dysfunction;

5) Mitochondrial dysfunction in the P&S nerve cells themselves and the mitochondrial damaged cardiovascular cells, both cause changes in P&S that manifest three to six months after relief of the initiating pathology (COVID);

6) due to this delay, and the normalcy of the interim, the resulting P&S Dysfunction is not associated with COVID,

7) the resulting P&S Dysfunction causes many symptoms the most complained about is lightheadedness and persistent fatigue that is not treatable by standard therapies.

Both Oxidative Stress and P&S imbalance are treatable [[ii]], depending on individual history, 9) rebalancing oxidation and P&S leads to improved outcomes including quality of life (i.e., fatigue is relieved) and improved productivity [[iii]].

The main clinical dilemma is that the connection between COVID and P&S Dysfunction is not obvious.  The symptoms of P&S Dysfunction, presenting three to six months after the disease is relieved and apparent normal function is returned, are interpreted as a new condition and misinterpreted as not a continuation of the previous condition. 

This causes three problems.  First, since only the symptoms are being treated, the therapy plan is often confounded due to conflicting dysfunctions.  For example, fatigue is often accompanied by lightheadedness or dizziness, anxiety, depression, sleep difficulties, and loss of productivity. 

Treating all of these symptoms individually involves competing agents.  Furthermore, and the second problem, since what is being treated are symptoms and not the underlying cause (Oxidative Stress and P&S imbalance), therapies are usually titrated to higher doses; and yet, the patients still do not respond as expected. 

Moreover, if and when P&S Dysfunction is suspected, the high doses of these medications often leave the patient sensitized to these medications.  This sensitization precludes their use at the very low levels needed for balancing the P&S nervous systems. 

All of these treatment issues can leave the Physician thinking that the patient is non-compliant or psychosomatic, which often leads to a psychology referral.  This can lead to the breakdown of the physician-patient relationship since the patient is sure that the symptoms are real and not in her or his head.

As suggested by the title of the recently published article [i], a simple P&S assessment may be made in the clinic to identify any P&S imbalance.  Relieving the P&S imbalance, which often involves Antioxidants [ii], and thereby restoring P&S and oxidant balance, relieves or prevents the symptoms of P&S imbalance post-COVID; thereby, minimizing any further reductions in quality of life and losses in productivity.

P&S testing is not ANS testing.  Most ANS test only test total autonomic function and force assumption and approximation to theorize P&S activity.  There is only one P&S test that provides simultaneous, independent measures of P&S activity.  What is expected from P&S testing is one or more of four possible P&S Dysfunctions that underlie the Dysautonomia typically associated with Oxidative Stress.

 

 

REFERENCES

_________________

[1] Murray GL.  COVID-19 cardiac complications: Is an easy, safe treatment strategy right under our noses?  J Cardiovasc Dis Diag. 2020; 8:5.  doi: 10.37421/jcdd.2020.8.415.

2 DePace NL, Colombo J.  Autonomic and Mitochondrial Dysfunction in Clinical Diseases:  Diagnostic, Prevention, and Therapy.  Springer Science + Business Media, New York, NY, 2019.

3 Acosta C, DePace NL, DePace NL, Kaczmarski K, Pinales JM, and Colombo J.  Antioxidants effect changes in systemic parasympathetic and sympathetic nervous system responses and improve outcomes.  Cardio Open. 2020; 5(1): 26-36.  doi:  10.33140/COA.05.01.04

4 Colombo J, Arora RR, DePace NL, Vinik AI.  Clinical Autonomic Dysfunction:  Measurement, Indications, Therapies, and Outcomes.  Springer Science + Business Media, New York, NY, 2014.

5 Vinik A, Ziegler D.  Diabetic cardiovascular autonomic neuropathy.  Circulation. 2007; 115: 387-397.

6 Vinik AI, Maser RE, Nakave AA.  Diabetic cardiovascular autonomic nerve dysfunction.  US Endocrine Disease.  2007; Dec: 2-9.

7 Malik, M.  The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use.  Circulation. 1996; 93:1043-1065.

8 Malik, M. and the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use.  European Heart Journal. 1996, 17: 354-381.

9 Akselrod S, Oz O, Greenberg M, Keselbrener L.  Autonomic response to change of posture among normal and mild-hypertensive adults: investigation by time-dependent spectral analysis.  J Auton Nerv Syst. 1997 May 12;64(1):33-43.

10 Piña IL, Di Palo KE, Ventura HO.  Psychopharmacology and Cardiovascular Disease.  JACC. 2018; 71(20): 2346-2359.

11 Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J.  Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities.  J Diabetes Science and Technology.  2008; 2(4): 568-71.

12 DePace NL, Vinik AI, Acosta C and Colombo J.  Oral vasoactive medications:  A Review of Midodrine, Droxidopa, and Pseudoephedrine as Applied to Orthostatic Dysfunction.  NEJM.  2020.  Submitted.

13 Vinik AI, Bloom HL, Colombo J.  Differential effects of adrenergic antagonists (carvedilol vs. metoprolol) on parasympathetic and sympathetic activity:  A comparison of measures.  Heart International. Heart Int. 2014; 9(1): 7-14; DOI: 10.5301/HEART.2014.12495.

14 Bloom HL, Vinik AI, Colombo J.  Differential effects of adrenergic antagonists (carvedilol vs. metoprolol) on parasympathetic and sympathetic activity:  A comparison of clinical results.  Heart Int. 2014 ; 9 (1): 15-21; DOI: 10.5301/HEART.2014.12496.

15 Murray GL and Colombo J.  (R)Alpha Lipoic Acid is a Safe, Effective Pharmacologic Therapy of Chronic Orthostatic Hypotension Associated with Low Sympathetic Tone.  Int J Angiol. In Print, 2018.

 

 

 

KEY WORDS

Coronavirus, Parasympathetic, Sympathetic, Oxidative Stress, Antioxidants

 

ABBREVIATIONS

ALA                            Alpha-Lipoic Acid

ANS                            Autonomic Nervous System

CoQ10                        Co-enzyme Q10

COVID-19                  Coronavirus (SARS-CoV-2)

P&S                             Parasympathetic and Sympathetic

PE                               Parasympathetic Excess

POTS                          Postural Orthostatic Tachycardia Syndrome

SE                               Sympathetic Excess

SW                              Sympathetic Withdrawal

[i] Murray GL.  COVID-19 cardiac complications: Is an easy, safe treatment strategy right under our noses?  J Cardiovasc Dis Diag. 2020; 8:5.  doi: 10.37421/jcdd.2020.8.415.

[ii] DePace NL, Colombo J.  Autonomic and Mitochondrial Dysfunction in Clinical Diseases:  Diagnostic, Prevention, and Therapy.  Springer Science + Business Media, New York, NY, 2019.

[iii] Acosta C, DePace NL, DePace NL, Kaczmarski K, Pinales JM, and Colombo J.  Antioxidants effect changes in systemic parasympathetic and sympathetic nervous system responses and improve outcomes.  Cardio Open. 2020; 5(1): 26-36.  doi:  10.33140/COA.05.01.04

Read More

Coronavirus Induces Oxidative Stress Leading to Autonomic Dysfunction – Part 1

Click here to download this post

Notes: This is the first in a series of 5 blog posts about COVID-19 and Autonomic Dysfunction.  This a pre-publication release that will be featured in a major medical journal.

Coronavirus Induces Oxidative Stress Leading to Autonomic Dysfunction Often With Delayed Symptom Onset

Heather L. Bloom, MD1 and Joseph Colombo, PhD, DNM, DHS2

  1. Electrophysiology, Atlanta Veterans Affairs Medical Center and Emory University Medical School, Atlanta, GA 
  2. Parasympathetic & Sympathetic Nervous System Consultant, Franklin Cardiovascular Associates, PA & Autonomic Dysfunction and POTS Center, Sewell, NJ, and Senior Medical Director & CTO, Physio PS, Inc., Atlanta, GA, dovetech@erols.com

Correspondence should be addressed to Dr. Colombo, dovetech@erols.com

 

ABSTRACT

Coronavirus, like other viruses and many chronic and serious pathologies, induce Oxidative Stress.  Oxidative Stress largely affects the Mitochondria of cells.  Cardiac and Nerve Cells are known to contain the largest numbers of Mitochondria of the cells in the body. 

The effect of Oxidative Stress on the Parasympathetic and Sympathetic (P&S) branches of the Autonomic Nervous System is to induce dysfunction.  P&S Dysfunction further affects the heart and other organs and systems of the body. 

Since the P&S branches are designed to work together to maintain normal organ function, even when dysfunctional, organ dysfunction is often delayed until P&S dysfunction is very significant.  Symptoms are not induced or realized until organ dysfunction presents. 

This delay in symptoms often appears to be healthy, and therefore is often not associated with the causal factor, such as Coronavirus.  Symptoms resulting from P&S dysfunction are often long-term and significantly impact patient quality of life and productivity. 

Symptoms include severe fatigue, anxiety, depression, lightheadedness, sleep difficulties, brain fog, cognitive and memory difficulties, GI disturbances, shortness of breath, palpitations, and more. 

Unfortunately, these symptoms are often not believed because these patients’ resting state is normal, including office exams, blood work, urine analysis, and other tests administered at rest, including many autonomic tests. 

However, the underlying P&S is not evident during the resting state it is only evident during the dynamic states when tests are typically not performed.  This editorial highlights the possibility of delayed Coronavirus-induced Oxidative Stress-induced P&S dysfunction, describes the possible types of P&S dysfunction, and offers possible therapy options to restore proper P&S function (balance).

ABBREVIATIONS

ALA                            Alpha-Lipoic Acid

ANS                            Autonomic Nervous System

CoQ10                        Co-enzyme Q10

COVID-19                  Coronavirus (SARS-CoV-2)

P&S                             Parasympathetic and Sympathetic

PE                               Parasympathetic Excess

POTS                          Postural Orthostatic Tachycardia Syndrome

SE                               Sympathetic Excess

SW                              Sympathetic Withdrawal

Read More

COVID Leads to Oxidative Stress and Parasympathetic and Sympathetic (P&S) Dysfunction

Click here to download this post

COVID, like all other viruses, attacks primarily the Mitochondria and DNA of cells see figure [adapted from [i]].  It attacks the DNA to help them replicate.  In this way, the virus is able to produce the proteins that it needs to live.  It cannot do this on its own.  This is one reason why viruses are very species-specific[1].  As parasites, they attack the mitochondria to obtain the energy they need to live by siphoning off a significant portion of the energy molecules (called ATP – adenosine tri-phosphate) that we also need to be active or even live.  The virus, by infecting us, leaves less energy for us the host.

Nerve cells and heart muscle cells contain, by far, the most mitochondria in the human body.  This attack on the mitochondria results in what is known as oxidative stress.  Oxidative stress[2] causes fatigue, exercise intolerance, and many of the other mental, cognitive, and physical (including pain) symptoms reported with PACS.  In most cases, it is like having a full fuel tank in your car with a clogged fuel filter.  You seem fine at rest (while idling), but as soon as you step on the gas to go (and be active), nothing happens because the necessary, additional gas (energy molecules) does (do) not reach the engine (the brain and nervous system and the heart).  In this case, the extra energy molecules are actually not available because they have been stolen by the virus.  All parasites (viruses, bacteria, molds, mildews, etc.) affect the mitochondria and energy supply this way.  This is why you are fatigued and have no energy when you are sickened by these agents.  Add to this the fact that COVID also compromises the lungs, reducing the host’s oxygen intake, causing less fuel to generate energy molecules, and you have the SARS effect.

One cause of Oxidative Stress is indeed cytokine dysregulation.  The “Cytokine Storm,” referenced as a “Viral Tornado” in the 20/20 interview of Mount Sinai Hospital in November 2020, is due to oxidants, including reactive oxygen species (ROS).[3]  Cytokine storm and oxidative stress are the main players of Acute Respiratory Distress Syndrome development during respiratory virus infections.[4]  Mechanisms of cytokine production (cytokine storm) and epithelial barrier disruption by respiratory virus infection leads to the enhanced ROS production.  

Cytokine Storm and Oxidative Stress in COVID-19 patients result in a vicious cycle[5], causing Hypercytokinemia, known as cytokine storm[6].  Given this, simple therapies to prevent oxidation and excessive cytokine release (Hypercytokinemia) are prevalent and readily available.  In fact, some are already being used, including Vitamins C & D and Zinc, tacitly confirming the Oxidative Stress hypothesis.

If the politically motivated powers that be would simply admit this commonly and well-known fact, Oxidative Stress is readily treated with antioxidants.  Again, that is, in large part, the reason why Vitamin C & D and Zinc are a significant part of COVID therapy.  The problem for the politicals is that these therapeutic agents do not make anyone any money.  They have to fear the public into believing that special medications and vaccines are required.  This is why commonly used and effective medicines that have worked here in the US and elsewhere around the world were pulled from doctors, because, again, they did not make any of the political powers any money.

The effect on nerve cells, especially Parasympathetic and Sympathetic (P&S) nerve cells, is what eventually leads to post-COVID syndrome[7].  These authors wrote an Op/Ed back in March of 2020 stating that a post-COVID syndrome will present.  We still cannot get that manuscript published (over 10 journals have refused to print it – that is why we have had to create our own journal and print it here in our own journal).

Oxidative Stress and its effect on the P&S nervous systems explain the first issue of PACS, a potential delay in the symptoms.  Initially, this was a problem of doctors, and may still be a problem based on a recent Op/Ed[8], writing about “echoes of chronic fatigue in the effort to blame the coronavirus for a host of questionable symptoms.”  This delay seems to separate COVID from PACS.  Add to this the general lack of knowledge about the P&S nervous systems, and this sort of ignorance gains credibility.  Especially when the patients seem normal at rest, for when most tests are administered, the patient is either sitting or lying down.  However, the P&S nervous systems are rarely resting.  In fact, when you are resting is, arguably, when the P&S nervous systems are most active.

The P&S nervous systems control or coordinate all organs and organ systems within the body (including themselves).  The job of the P&S nervous systems, collectively, is to maintain normal organ function, even though they themselves may not be functioning normally.  Until the P&S system fails, the organs remain functioning normally, unless they are attacked directly.  Once the organs fail, then symptoms present.  It is the unhealthy or improperly controlled organs that generate symptoms.  The delay in symptoms presenting is based on how long it takes the P&S systems to fatigue or become significantly un-balanced (fail), permitting the organs to then function abnormally. resulting in symptoms.

It is like the heating and cooling systems of your house.  Assume you have no knowledge of, nor are able to see, hear, or access the cooling and heating systems of your house, and that they are individual systems working together to keep you comfortable.  Assume all you have to assess the function of those systems is the thermostat in the house.  Say you set the temperature on the thermostat to 70°F (like 70 beats per minute for heart rate).  Assume it is a hot, humid summer day in the south somewhere.  Assume that the cooling system is well.  Now assume that a $5.00 heater switch fails and the heater turns on to full capacity.  What happens to the temperature of the house as measured by the thermostat?  …  NOTHING!  …  The cooling system amps up to compensate not only for the ambient heat but also for the heat from the heating system.  Now both systems are operating at full capacity or more, and the thermostat temperature still reads 70°F, and everyone is still happy.

How long will this situation last until there is a catastrophic failure in one or both of the air conditioning systems?  Only after a catastrophic failure does the temperature change.  Then it is too late, and the repair is $5,000.00 or more.  The change in temperature, indicating a failure, is too late!  The $5.00 repair is simpler, and easier, but you have to be measuring both the cooling and heating systems, not just the net result of their combined activities.

The autonomic nervous system in the human body is very similar in this regard.  We are still surprised by heart attacks and strokes and other organ failures because we only measure the autonomic nervous system (the net result of the P&S nervous systems) and not the individual P&S nervous systems themselves.  This is made more poignant by the fact that it is the purpose of the P&S nervous systems to work together to maintain normal organ function, even when they themselves are dysfunctional.  Current, common-place healthcare measurements are made more effective and efficient with the additional information of P&S Monitoring.

The second issue is that the parasitic effect of COVID is on all mitochondria within all organs.  This compounds the effect of an unbalanced P&S nervous system and the inefficient control from them, which also affects all organs. 

Again, unfortunately, relatively little is known about the P&S nervous systems because, until rather recently, an efficient and simple method of measuring it was not widely accepted, and the more widely known measures of the Autonomic nervous system as a whole were not able to specify the underlying dysfunctions sufficiently so as to develop effective treatments or to demonstrate that treatment was even possible. 

This leaves doctors with the current plan of simply “characterizing the disease.”  In other words, simply listing all of the symptoms and simply treating all of the symptoms individually.  This of course leads to many prescription medications, whose multiple interactions are unknown, perhaps causing more symptoms than they (collectively) are supposed to relieve. 

In fact, this compounding effect of unbalanced P&S control of weakened or dysfunctional organs multiplies the number of symptoms and adds more disorders, some of which appear to be mental illnesses as well.  Note, most of these mental illnesses are also explained by unbalanced P&S control causing reduced blood flow to the heart and brain, resulting in brain fog, cognitive and memory difficulties, depression, anxiety, headache and migraine, muscle and joint pain, and sleep difficulties, as well as the fatigue, lightheadedness, and malaise commonly associated with PACS.

The lack of understanding of the P&S nervous systems leads to a third general problem or issue.  Without the additional information from P&S testing, medicine has no other choice but to simply treat symptoms (which plays into the hands of the pharmaceutical and marijuana industries, enabling them to sell more product).  Yes, understanding the P&S nervous systems does explain all symptoms of COVID and PACS,   including Diarrhea.[9],[10] 

Only the P&S nervous systems connect all symptoms and organ systems involved in the COVID and PACS conditions.  In the example of Diarrhea, yes, the virus is in the stool, but then all viruses end up in the stool, so what is special about COVID? COVID strongly affects the immune system, which causes Parasympathetic Excess, which overdrives the motility of the GI system and leads to Diarrhea.  Let’s not trample the issue out of ignorance.  Let’s get to the underlying cause, do our best to minimize mortality risk and target the cause to minimize morbidity risk.  Then, treat the end-organs that were themselves damaged and remain dysfunctional.

Depression (and Anxiety) are also more likely to be a result of dysautonomia.  If the brain receives low levels of blood flow due to at least three types of dysautonomia, some of which may present simultaneously, the brain will be “asleep” while the patient is upright, sitting or standing, all day.  A brain “asleep” is too often misdiagnosed as a brain “depressed.” 

Then, if the blood flow drops any lower (due to a large meal or emotional event, etc.), the brain will issue an “Adrenaline Storm,” which is its way to call for more blood.  The Adrenaline Storm may then cycle Anxiety.  Treating this Depression/Anxiety condition with high dose antidepressants, such as Fluvoxamine (an OCD drug)[11]m ay, in some people, help to increase blood flow to the brain through other P&S interactions, but this is a very inefficient therapy and may be a self-fulfilling prophecy, forcing the patient to think that they have a mental health issue.  Besides, the data are scant, and the conditions are not well controlled to rule out isolation, masks, and social distancing, which are contributing enough to Depression.  We do not need any other causes.

Unfortunately, in many cases, simply increasing the numbers of medications and their dosages, in the hopes of relieving the symptoms faster, actually leads to more complications.  Western pharmaceutical theory is based on the understanding of what one chemical (as a medication) in isolation will do to the human body.  The interactions between more than two or three chemicals (medications) are not well known.  This is the main reason why the very ill or elderly who are on 15 to 17 medications a week are chemically relegated to very poor qualities of life, sitting as lumps in their wheelchairs with no energy of motivation to be productive.

It is like the old nursery rhyme of the old lady that swallowed a fly, then a spider to get the fly, then a cat to get the spider, then a dog, etc.  By the time you get to swallowing the elephant and the doctor is considering prescribing you a blue whale, it may be prudent to consider getting the fly.

The “fly” in the case of COVID is Oxidative Stress, which may be “gotten” with the super antioxidants, r-Alpha-Lipoic Acid (rALA) and Co-Enzyme Q10 (CoQ10).  rALA is selective for nerves and heals the mitochondria, DNA, and other cellular processes that are affected by the virus, and CoQ10 is selective for heart muscle cells effecting the same repairs in those cells.  Furthermore, rALA & CoQ10 are the most powerful antioxidants the body produces (second only to the most powerful antioxidant of all, which is exercise), and they make themselves even more powerful by recycling other antioxidants, such as Vitamin C & D, and Zinc.

So, why are we grasping at straws?  Again, in the hysteria, we are overlooking the simple solutions.  Unless of course it is because the simple solutions do not make the instigators of all of this enough money.  Now there is a KF-94 mask that is 94% effective, as opposed to the KF-95 mask that is 95% efficient in filtering out airborne particulates.  The article[12] states that the bottom line is this: “It’s not always just about filtration efficiency.”  The article continues to state that these (surgical-grade) masks, such as the KF-94, are for use in a hospital because they’re designed for medical settings.  In the real world, it may be they are hard to wear through the course of the whole day.  The best mask is the one you can wear all the time.

So, is it about filtration or comfort?  Viruses are very, very small!  Are we trying to prevent the spread of the virus or not?  Anything but a surgical-grade mask is useless in preventing the spread of the virus because the virus goes through the mask as if it were not there, and even with a surgical-grade mask, by the time a man has “5 o’clock shadow,” his hair has pushed the mask off his face far enough for the virus to escape un-impeded; not to mention men with beards.  Similarly for some women with make-up, the microscopic peaks and valleys may be large enough for the virus to fit through and escape.

Another article[13] is entitled “International team of scientists identifies new treatment for COVID-19 that appears to be far more effective than drugs in use now.”  However, it has only been tested on cells in the lab.  The article concludes that “Even though ‘a drug is effective in cells in the laboratory, we don’t know what effect it will have on cells in the human body.’”  So, how is this a new treatment yet, let alone better than current drugs?  Again, science needs to be left alone to do their work and not give false hopes.  Similarly, another article states that a “new Israeli drug cured 29 of 30 moderate/serious COVID cases in days in hospital.”[14]  Great, 29/30!  But how were the patients picked?  What were their histories?  There are still a million questions to be answered.  There is a reason why it takes years and 10,000 patients to approve a new drug.  What happened to the one that it did not cure and why?  Did that patient die?  A death rate of 1/30, or 3.33% is an awfully high death rate for a new drug.  Killing the patient is not an acceptable side effect.

However, just relieving Oxidative Stress does not always repair the damage done to the P&S nervous systems.  Further therapy may be required to rebalance the P&S systems to return health and wellness.  P&S imbalance must be measured and monitored, because everyone is different, and the individual’s P&S systems at that time must be known in order to plan therapy.  Some consider the P&S nervous systems as your physiologic fingerprint.  They include and remember your entire medical and life history.

There are at least four P&S dysfunctions (dysautonomias) that may precipitate the symptoms of post-COVID syndrome, and more than one is quite possible, and their specific interactions are based on the individual patient’s own clinical and personal histories.  All four dysautonomias, inappropriate P- or S-actions, individually explain the majority of PACS symptoms.  Combinations of the four, which are more likely, in our experience, explain the range in severity of PACS.  For more information, visit www.physiops.com.

Treating the P&S nervous systems, however, is rarely a fast process, nor does more medication hasten the process; in fact, quite the opposite.  Much like a pendulum, hitting it hard knocks the pendulum off its hinge and you have many more problems.  Treatment requires small, gentle, easy nudges over time to correct “the pendulum.”  So, it is with the P&S nervous systems.  Further, it is not like the cold where you get ten days of therapy and are healthy again.  It may take up to three months to effect a change in the P&S nervous systems.  It is more like breaking a bad habit and establishing a new, hopefully good habit.  Even still, there are few if any changes in symptoms because the organs have yet to change.  Changing the organs may take another three months depending on the severity of the insult.  These time frames are also lengthened by age and severity of the insult, in this case, COVID.  Patients must be diligent and patient during these six months or the condition will worsen, and it may take years to recover.

The average patient, by the time they visit a P&S clinic, have seen dozens of doctors over decades of time.  The problem is that the other doctors only assess them when they are at rest, sitting or lying down.  Rarely do they assess them while active.  As the typical test results show, they are normal at rest – which is why many are not believed.  They had better be normal at rest – they have had numerous doctors working really hard to make them normal … at rest; as attested to by P&S monitoring results.  Again, a problem is that this portion of the nervous system never rests.  Therefore, the P&S must be tested while active as well.  This is the basis of P&S testing and always shows the reason(s) for a patient’s symptoms, as well as morbidity and mortality risks (respectively, they are the risks of additional symptoms, which is morbidity risk, and the risk of a major adverse event, including heart attack, stroke, and death, which is mortality risk).

The fourth issue, again based on the lack of understand and data on the P&S nervous systems, is that physicians have been left with few therapy options that are specific for the P&S nervous system.  Unfortunately, there are, in fact, only two medications approved for P&S dysfunction, and both are approved for the same, singular dysfunction.  Fortunately, it is a common P&S dysfunction that is common to post-Oxidative Stress conditions:  Orthostatic Dysfunction, typically Postural Orthostatic Tachycardia Syndrome (POTS) or Orthostatic Hypotension.  All other therapies are applied off-label.  This causes other problems, including the fact that in western medicine, titrating patients to high levels of medication is common.  This desensitizes patients to the low dosages needed to treat the P&S systems and not cause more symptoms.  This often forces physicians to use supplements and lifestyle modifications, which are often less reliable or effective; especially if Oxidative Stress is not considered.

Given all of this, you begin to see why medicine is more focused on simply treating the symptoms of post-COVID syndrome or PACS, and then trying to convince you that this is your new normal and you must embrace it.  Even before COVID, we have been railing against that philosophy, because as tens to hundreds of thousands of P&S (not autonomic, but P&S) patients across the country will attest, it does not have to be so – you may have a decent quality of life and productivity restored.

 

[1] As an example, all human HIV studies were performed on simian (monkey) HIV viruses so enable safety in the lab and not infect the humans doing the research.

[2] PubMed, a very large collection of highly reputable medical journals, alone lists 273 references associating coronavirus, specifically, with oxidative stress.  This does not include the thousands of references associating other viruses with oxidative stress.

[3] Ye S, Lowther S, Stambas J. Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3. J Virol. 2015;89(5):2672-2683. doi:10.1128/JVI.03529-14

[4] Meftahi GH, Bahari Z, Jangravi Z, Iman M.  A vicious circle between oxidative stress and cytokine storm in acute respiratory distress syndrome pathogenesis at COVID-19 infection .  Ukr.Biochem.J. 2021; Volume 93, Issue 1, Jan-Feb, pp. 18-29.  doi:https://doi.org/10.15407/ubj93.01.018

[5] Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox Biology of Respiratory Viral Infections. Viruses. 2018; 10(8):392. https://doi.org/10.3390/v10080392

[6] Suzuki K. Cytokine Response to Exercise and Its Modulation. Antioxidants. 2018; 7(1):17. https://doi.org/10.3390/antiox7010017

[7] PubMed alone lists over 1200 references associating oxidative stress with P&S dysfunction or imbalance.

[8] The Dubious Origins of Long Covid, by Jeremy Devine  March 22, 2021 6:36 pm ET, Wall Street Journal

[9] Coronavirus symptoms: This is the likely order in which COVID-19 symptoms appear after you get infected, by Anushree Gupta  Updated Feb 01, 2021 | 16:14 IST, https://www.timesnownews.com/health/article/coronavirus-symptoms-this-is-the-likely-order-in-which-covid-19-symptoms-appear-after-you-get-infected/714563

[10] COVID-19 and Diarrhea, https://www.news-medical.net/health/COVID-19-and-diarrhea.aspx

[11] What Is Fluvoxamine? OCD Drug Could Be Used to Treat COVID, by Jason Murdock On 3/8/21 AT 9:49 am EST

[12] “Coronavirus FAQ: Why Am I Suddenly Hearing So Much About KF94 Masks?” by Pranav Baskar  January 22, 20216:12 pm ET, https://www.npr.org/sections/goatsandsoda/2021/01/22/959683338/coronavirus-faq-why-am-i-suddenly-hearing-so-much-about-kf94-masks

[13] International team of scientists identifies new treatment for COVID-19 that appears to be far more effective than drugs in use now, by Mark Johnson  Milwaukee Journal Sentinel https://www.jsonline.com/story/news/2021/01/25/international-team-finds-new-more-effective-drug-treat-covid-19/6673529002/

[14] New Israeli drug cured 29 of 30 moderate/serious COVID cases in days — hospital, by Toi Staff 5 February 2021, 3:29 pm, https://www.timesofisrael.com/new-israeli-drug-cured-moderate-to-serious-covid-cases-within-days-hospital/

[i] Rasa S, Nora-Krukle Z, Henning N, Eliassen E, Shikova E, Harrer T, Scheibenbogen C, Murovska M, Prusty BK; European Network on ME/CFS (EUROMENE). Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med. 2018 Oct 1;16(1):268. doi: 10.1186/s12967-018-1644-y. PMID: 30285773; PMCID: PMC6167797.

Read More
Mind Body Wellness Chart

COVID-19 Involves Oxidative Stress and Inflammation: Antioxidants Are Possibly Therapeutic and Preventative

Click here to download this post

SARS-COV-2 (COVID-19 or Coronavirus) is a severe, acute, respiratory syndrome infection that involves the lungs and the immune system.  The major clinical feature is Respiratory Distress Syndrome, and one key complication is Acute Cardiac Injury [1].  COVID-19 is a self-limiting infection and the strength of the immune and respiratory systems is critical in overcoming the infection and surviving the potential morbidity and mortality risks associated with the infection. Several comorbidities have been reported as risk factors for unfavorable prognosis in patients with COVID-19.  The most common comorbidities that influence the outcome of COVID-19 patients are Cardiovascular Disease (CVD), Diabetes Mellitus type 2 (DMT2), Hypertension, Malignancy and Chronic Obstructive Pulmonary Disease (COPD), among others, especially pulmonary disorders.  Smoking and other factors that may compromise the lungs have also emerged as risk factors associated with a worse outcome.  For example, China, which is one of the hardest-hit countries, has the vast majority of its population living in densely populated cities in which there have been significant amounts of construction, and the majority of their heat and electricity comes from burning fossil fuels, especially coal.  This has been the condition for a number of years.  On a visit to a number of their larger cities over a number of weeks in 2014, many of its citizens, especially the younger adult population, were already wearing masks to protect themselves from the heavy particulate pollution.  In other words, by the time of the COVID-19 outbreak, it is reasonable to assume that the population of China was already respiratory-compromised to some degree.

As commented [2], it has been shown that oxidative stress is associated with the same diseases (including CVD and DMT2 [3]) that increase the risk of a severe outcome from COVID-19.  Oxidative stress is a condition of imbalance between the release of Reactive Oxygen Species (ROS) and the endogenous antioxidant capacity of an individual’s system.  It is also well known that smoking can induce cellular oxidative stress while it depletes antioxidants through various mechanisms [4],[5].  Studies have shown that antioxidant deficiency leads to increased sensitivity to even mild oxidative stress, while altered activity and levels of antioxidants have been recognized as markers of inflammation [6].  For example, and specifically for the Respiratory System, dysregulation of Glucose 6-Phosphate Dehydrogenase leads to a greater risk for protein glycosylation [7], a process that plays an essential role in promoting viral pathogenesis, including COVID-19 [8,[9],[10].  This example suggests that antioxidant therapy may help to treat, and perhaps prevent, SARS infections, including COVID-19, as well as Influenza.

It has been demonstrated [11] that human lung epithelial A549 cells with lower G6PD activity (via RNA interference) have a 12-fold higher viral production when infected with human coronavirus 229E, which shares a sequence similarity with COVID-19 and clinically resembles it, compared to control cells [11,[12].  Antioxidants may at least provide heart protection for COVID-19-infected individuals, based on the oxidative stress theory [13].  According to recent clinical reports, the therapeutic time for COVID-19 infection is much longer than 14 days, but long-time viral stimulation is prone to suddenly elicit intensive immunological reactions, cytokine storm, and immune-cell infiltration.  However, some immunocytes, especially Macrophages and Neutrophils, can produce numerous Reactive Oxygen Species (ROS) [13,[14],[15].

A certain level of ROS is important for regulating immunological responses, clearing viruses, and general health.  It is part of the first line of defense by the immune system.  Together with fever, Oxidants (like ROS) are used to “burn” the invading “trash” (i.e., foreign or excessive bacteria, molds, mildews, viruses, etc.) that enters your body every moment.  The immune system collects the Oxidants and dumps them on the invading trash to kill them by oxidizing cellular proteins, membrane lipids, Mitochondria, and even DNA and RNA, etc.  Meanwhile, the body brings in the Antioxidants to “put out the fire” once the “trash” is burned to protect the healthy tissue.  However, excessive ROS (such as with illness, cancer, or Psychosocial stresses – including mental and physical stresses) will cause excessive oxidative stress, overwhelming the body’s reserve of Antioxidants, resulting in sickness and, in the extreme, death.  This is why, in general, it is good to have a healthy Antioxidant reserve, and this is best built up through exercise and diet and, in those at risk, with additional nutraceuticals to supplement.

Oxidative stress may quickly destroy not only virus-infected cells, but also normal cells in the lungs, heart, nerves, and kidneys, resulting in multiple organ failure.  Lungs are susceptible because they are constantly exposed to the outside.  The heart and nerves are susceptible because they contain the greatest number of Mitochondria of all the cell-types in the body.  Ironically, Mitochondria (the power plants of the body) are the greatest natural producers of ROS in the body (think of ROS and oxidants as the “pollution” from the power plants, however, in the case of the body these “pollutants” are used for good, to help the body, under normal conditions).  The kidneys are susceptible because their job is to filter out the toxins from the blood, therefore, they exist in a highly toxic environment.  Thus, a healthy Antioxidant reserve helps to prevent illness and, if ill, helps to treat illness, just like with colds, when people consume additional amounts of Vitamin C, a well-known antioxidant, to help rid themselves of the virus that caused the cold.

Thus, a potential antioxidant therapy could be proposed to alleviate the respiratory, cardiogenic, and other casualties caused by COVID-19.  For example, inexpensive medicinal Antioxidants include Vitamin C (Ascorbic Acid) and Vitamin E.  These work through their reductive Hydrogen atoms react with ROS and then produce nontoxic water [16].  Plant-derived molecules (similar to ancient Chinese medicine), such as Curcumin (aka., Turmeric), may have potential antioxidant efficacy. These well-known Antioxidants and others (e.g., Vitamin A, Glutathione, Resveratrol, Omega-3 Fatty Acids, proper daily intake of water – 48 to 46 oz, etc.) are known to be made more potent through recycling with either Alpha-Lipoic Acid (ALA) or Co-Enzyme Q10 (CoQ10).  While ALA and CoQ10 are arguably the most powerful Antioxidants the body naturally makes, they increase their strength and the strength of the other Antioxidants by redirecting them away from the kidneys for another pass through the body.  ALA tends to be specific for nerves, helping to protect the Mitochondria in the nerves to prevent the nerves from weakening, thereby preventing or relieving the neurological symptoms of illnesses, including viruses, like lightheadedness, malaise, cognitive and memory difficulties, fatigue, etc.  CoQ10 tends to be specific for the heart, helping to protect the Mitochondria in the heart to prevent the heart from weakening, thereby preventing or relieving the cardiological symptoms of illnesses, including viruses, like low blood pressure, lightheadedness, fatigue, etc.

These Antioxidants also help to reduce chronic inflammation [6] which serves to exacerbate the effects of viruses, especially in the lungs as with SARS viruses (including COVID and Influenza).  These Antioxidants are helped with Nitrates (dietary and supplemental) to boost the production of Nitric Oxide in the body.  Nitric Oxide performs multiple functions in the body, including as an Antioxidant and an Anti-inflammatory, and it helps to prevent or relieve Atherosclerosis to improve heart health.  Nitric Oxide also helps to detoxify the body, reducing the prevalence of Oxidants, including ROS.  Nitric Oxide may be supplemented through L-arginine (which is limited by the body’s needs to produce it), L-Citrulline and L-Carnitine (which help the body to produce L-Arginine, and therefore is limited), and dietary Nitrates (the most well-known supplement at this time is Beet Root Extract Powder[1], and there are others).  Dietary Nitrates are not limited and help to produce as much Nitric Oxide as is possible from the amount ingested.  A healthy diet, like the Mediterranean Diet with multiple servings of fresh vegetables and fruits, helps to provide all of the above.  The typical American Diet does not and may be contributing to Americans being more susceptible to illness, including COVID-19.

An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay [17].  For example, sufficient protein intake is crucial for optimal antibody production.  Low micronutrient status, such as of vitamin A or Zinc, has been associated with increased infection risk.  Frequently, poor nutrient status is associated with inflammation and oxidative stress.  Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols (i.e., Resveratrol) and sources of other antioxidants (e.g., Glutathione, CoQ10 and ALA), as well as Nitrates and Amino Acids that support proper levels of Nitric Oxide production. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and Antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors such as Angiotensin Converting Enzyme 2 receptors (ACE2).  Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, and other sources of healthy Fatty Acids (e.g., Extra Virgin Olive Oil), have also been shown to produce anti-inflammatory effects, among other benefits for example, to help keep cell membranes pliable and resilient to infection.  These and more are the benefits of a healthy diet with fresh, ripe produce (including extra helpings of dark green leafy vegetables – raw or lightly cooked, they still need to be green; not gray) and well-balanced proteins and fats which reduce inflammation and oxidative stress, thereby strengthening the immune system during any infection, including the COVID-19 crisis.

With all of the above regarding Antioxidants being said, arguably the most powerful and universal Antioxidant is EXERCISE [6,[18]].  Just one example is fever.  As mentioned above, fever is part of the body’s first-line defense against illness and invading pathogens (viruses, bacteria, molds, mildews, allergens, etc.).  While healthy human cells may survive between the temperatures of 98 and 104 °F, pathogens tend to be killed above 101.1 °F.  Mild to moderate exercise for 40 minutes or more a day at least three times per week will simulate a fever (raise body core temperature to above 101.1 °F for at least 20 minutes).  The simulated fever will help the body to eliminate any invading pathogens before they acquire a “foot-hold.” Read that: potentially kill off any COVID-19, Influenza, or other viruses, if exposed, before the pathogens (including the viruses) have a chance to infect you and make you sick.  By mild to moderate exercise, we mean walking, gardening, playing with children, housework, calisthenics, or any activity that raises your heart rate and blood pressure above resting for a continuous 40 minutes and makes you sweat for at least 20 minutes.  Of course, if you are healthy and fit, more strenuous exercise is also helpful to simulate fever.  Exercise will also provide a number of other benefits, including:  happier moods, reduced pain, better sleep quality, improved concentration and creativity, reduced stress levels and anxiety, maintained mental fitness, improved parasympathetic and sympathetic nervous systems function, stress reduction, improved heart and vascular health, improved neuroendocrine health, weight control (loss), reduced risk of DMT2 and metabolic syndrome, reduced cancer risk, stronger bones and muscles, reduced arthritis and other joint disorders, and promoted longevity (promotes living longer) [6].[2]

Exercise is demonstrate to have both short and long term effects by increasing aerobic capacity thereby increasing the function and strength of immune and respiratory systems, particularly those essential for overcoming COVID-19 infections and associated disorders. [18].  Exercise that increases aerobic capacity produces safe improvements in the function of immune and respiratory systems, particularly those specific for COVID-19 infections.  These improvements are mediated through:  (1) improved immunity by increasing the level and function of immune cells and immunoglobulins, regulating CRP levels, and decreasing anxiety and depression; (2) improved respiratory system functions by acting as an Antibiotic, Antioxidant, and Antimycotic[3], restoring normal lung tissue elasticity and strength; and (3) reducing the effects of risk factors such as DMT2,  Hypertension, and CVD, Obesity, and aging, to decrease COVID-19 risk factors, which helps to decrease the incidence and progression of the virus.  To punctuate the issue, a recent review article [19] highlights the impact of “sedentarism” due to the COVID-19 home confinement.  Even a few days of sedentary lifestyle are sufficient to induce muscle loss, neuromuscular junction damage and fiber denervation, insulin resistance, decreased aerobic capacity, fat deposition and low-grade systemic inflammation.  Regular moderate exercise, together with a 15-25% reduction in caloric intake, are recommended for preserving neuromuscular, cardiovascular, metabolic and endocrine health, important in reducing the effects of the virus.

 

A proper dose of Antioxidants may ameliorate respiratory, cardiac, and other system injuries of critically ill COVID-19-infected patients

 

Even after a serious infection, like from COVID-19, if the Antioxidant system was over taxed, the virus or infection will leave behind oxidative stress – at the cellular level.  We emphasize “at the cellular level” because often times, the systems seem normal and healthy and all of the tests that most physicians order return normal, yet there are lingering symptoms and even disability, both mental and physical.  The problem is two-fold.  First, while the individual cells themselves are dysfunctional, the net sum total of their functioning still meets the minimum standards for “normal.”  Second, the typical patient’s problem is not at rest (which is when most tests are performed – sitting or lying down) but when active.  It is like a car with a full fuel tank, which idles just fine, but, due to a clogged fuel filter, cannot accelerate when needed.  They look normal at rest, but are quickly fatigued when required to do work, either mental or physical.  Again, Antioxidants, especially ALA, CoQ10, and EXERCISE, will help to relieve the oxidative stress and thereby relieve the fatigue and other lingering symptoms.

Currently, there is a lack of evidence regarding the exact role that Antioxidants play in COVID-19 infection. High-dose supplementation with Antioxidants, when given at an early stage of the infection, may prevent the spread of the virus in the body, thereby providing protective effects and reducing the severity of disease.  This is proven to help in the other well-known SARS viruses including Influenza.  To that end, traditional medicine products, supplements and nutraceuticals that are Antioxidants and anti-inflammatories are amongst the various additive treatments for COVID-19 under investigation [20].

ENDNOTES

[1] Not the portion of the beet that is typically eaten, the tuber, but the little root below the tuber.

[2] However, as always, an exercise regimen should be started under close physician supervision.  The wrong types of exercise may do more harm than good, including increasing body fat (and thereby weight), fatigue, and pain due to the fact that the body is programmed to over-react to stresses.  Under these conditions, the body sees exercise as stress and works to protect itself against the stress. 

[3] An agent that is used against fungal infections.

 

REFERENCES

____________________

[1] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497–506.

[2] Wang JZ, Zhang RY, Bai J.  An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-19-infected patients.  Int J Cardiol. 2020 Apr 6.  doi: 10.1016/j.ijcard.2020.04.009 (Epub ahead of print).

[3] Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, et al. Oxidativestress and advanced lipoxidation and glycation end products (ALEsand AGEs) in aging and age-related diseases. Oxid Med Cell Longev2019;2019:3085756.

[4] Niemann B, Rohrbach S, Miller MR, et al. Oxidative stress and cardio-vascular risk: obesity, diabetes, smoking, and pollution: part 3 of a 3-part series. J Am Coll Cardiol 2017;70:230e251.

[5] Wenham C, Smith J, Morgan R. Gender and COVID-19 WorkingGroup. COVID-19: the gendered impacts of the outbreak. Lancet2020;395:846e848.

[6] DePace NL, Colombo J.  Autonomic and Mitochondrial Dysfunction in Clinical Diseases:  Diagnostic, Prevention, and Therapy.  Springer Science + Business Media, New York, NY, 2019.

[7] Jain SK. Glutathione and glucose-6-phosphate dehydrogenase defi-ciency can increase protein glycosylation. Free Radic Biol Med 1998;24:197e201.

[8] Watanabe Y, Bowden TA, Wilson IA, et al. Exploitation of glycosyl-ation in enveloped virus pathobiology. Biochim Biophys Acta GenSubj 2019;1863:1480e1497.

[9] Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215e220.

[10] Gumustekin K, Cifttci M, Coban A, et al. Effects of nicotine and vitaminE on glucose 6-phosphate dehydrogenase activity in some rat tissuesin vivo and in vitro. J Enzyme Inhib Med Chem 2005;20:497e502.

[11] Wu YH, Tseng CP, Cheng ML, et al. Glucose-6-phosphate dehydroge-nase deficiency enhances human coronavirus 229E infection. J InfectDis 2008;197:812e816.

[12] Li Y, Liu B, Cui J, et al. Similarities and evolutionary relationships ofCOVID-19 and related viruses. arXiv 2020;2003. 05580 [q-bio.PE].

[13] Loffredo L, Martino F, Zicari AM, Carnevale R, Battaglia S, Martino E, et al., Enhanced NOX-2 derived oxidative stress in offspring of patients with early myocardial infarction, Int. J. Cardiol. 293 (2019) 56–59.

[14] Perrone LA, Belser JA, Wadford DA, Katz JM, Tumpey TM, Inducible nitric oxide contributes to viral pathogenesis following highly pathogenic influenza virus infection in mice, J. Infect. Dis. 207 (2013) 1576–1584.

[15] Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, et al., Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury, Cell 133 (2008) 235–249.

[16] Erol N, Saglam L, Saglam YS, Erol HS, Altun S, Aktas MS, et al., The protection potential of antioxidant vitamins against acute respiratory distress syndrome: a rat trial, Inflammation 42 (2019) 1585–1594.

[17] Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020 May 27;12(6):E1562. doi: 10.3390/nu12061562. PMID: 32471251.

[18] Mohamed AA, Alawna M. Role of increasing the aerobic capacity on improving the function of immune and respiratory systems in patients with coronavirus (COVID-19): A review.  Diabetes Metab Syndr. 2020 Apr 28; 14(4): 489‐496.  Published online ahead of print,

[19] Narici M, De Vito G, Franchi M, Paoli A, Moro T, Marcolin G, Grassi B, Baldassarre G, Zuccarelli L, Biolo G, di Girolamo FG, Fiotti N, Dela F, Greenhaff P, Maganaris C. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci. 2020 May 12:1-22. doi: 10.1080/17461391.2020.1761076. Epub ahead of print. PMID: 32394816.

[20] Fauci AS, Lane HC, Redfield RR. Covid-19: Navigating the uncharted. N Engl J Med 2020;382:1268e1269.

Read More