More Than Sick of Salt

Blog

Signs and Symptoms of Dysautonomia (Autonomic Dysfunction)

Click here to download this post

By Dr. Nicholas DePace and Dr. Michael Goldis

Symptoms of Dysautonomia include fainting. drop in blood pressure with getting up, blood pressures that occur without a known cause, flushing of the face, lack of sweating or sweating too much, vomiting, constipation, diarrhea, difficulty swallowing, swelling of the belly, disturbances of urination, difficulties with erections, episodes of stopping breathing and the declining ability to see at night. Quite a lot!

Before the person actually faints, they may experience loss of strength in the muscles that keep us upright, weakness, a generalized feeling of not being well, nausea, headache, sweating, a pale complexion, difficulty seeing and a sense that they are about to lose consciousness. 

Usually low blood pressure and slow heart beat accompany these symptoms. These signs and symptoms can be caused by emotional stress, drops in blood pressure when getting up, vigorous exercise in a hot environment, blockage of blood returning to the heart, sudden onset of pain or its anticipation, and loss of fluids.

There can be a variety of other circumstances involved with these feelings faint one gets before they faint due to dysautonomia.

When a person does faint, they usually limp. Some muscle movement may occur and they may experience fainting and sometimes lose bowel control which can appear like seizure. what is different is that recovery is rapid  once the person is lying flat. After the fainting event, headache, nausea and fatigue. usually persist.

 

Reference – Current Medical Diagnosis and Treatment, Dysautonomia  2021 page 101

 

Read More
What is Orthostatic Hypotension

Cracking the Code of Dysautonomia: POTS, Orthostatic Hypotension, and Heart Health

Click here to download this post

by Nicholas DePace MD, FACC and Michael Edward Goldis DO, FACOI, MS, BS in Pharm

When venous pooling occurs, the cardiovascular system attempts to maintain cardiac output with activation of the sympathetic nervous system, the so called accelerator of the body.

Adrenalin is released in above normal amounts and that causes the heart to beat faster or compensatory tachycardia. In addition, increased vascular tone occurs with alpha agonist activity.

This maintains blood pressure while there is decreased preload from venous pooling and maintains cardiac output by increasing heart rate with a reduced stroke volume.

This explains how cerebral circulation and thus consciousness is maintained in compensated states like orthostatic hypotension and POTS.

The increased heart rate increased the output of the heart (the cardiac output) while the actual volume the heart puts out each stroke (the stroke volume) falls because of venous pooling.

The heart rate may increase 30, 40 or more above baseline. Therefore, POTS is known as a compensated neuro-cardiovascular dysfunction. One could argue that this is not a well-compensation as the patient has significant symptoms still resulting in orthostatic intolerance.

In contrast, Orthostatic hypotension is thought of as an uncompensated neuro-cardiovascular dysfunction. Here, the patient can become dizzy and lightheaded because the blood pressure is not maintained when there is venous pooling.

Because the heart rate generally does not increase significantly for compensation, the patient’s blood pressure drops and may even have overt syncope.

Patients with orthostatic hypotension often do not have an adequate rise in heart rate because of sympathetic nervous system decompensation.

A person can have a 30 or 40 point rise in heart rate, meeting the criteria for POTS, and in another moment, when the neuro-cardiovascular system is not compensated, they can have a blood pressure drop resulting in orthostatic hypotension.

So, while it is rare, both POTS and orthostatic hypotension can coexist. Generally, if someone demonstrates orthostatic hypotension, they rarely have POTS and vice versa.

Vasovagal syncope is a sort of form of orthostatic hypotension which is delayed.

This is whether is an increasing vagal tone that prevents blood vessels from adequate constriction and prevents the heart rate from adequately increasing.

This is an extremely delayed form of orthostatic hypotension which sometimes can be reproduced on Tilt Testing.

POTS oftentimes is due to several mechanisms. There can be hypovolemic, hyperadrenergic, and neuropathic POTS. Mast cell activation is a potential mechanism as well as certain enzyme deficiencies.

When the sympathetic nervous system is extremely overactive the blood pressure may even elevate with a rise in heart rate, which is hyperadrenergic POTS.

Regardless of the mechanism of POTS, the treatment is basically similar. But, for hypovolemic POTS a volume expander makes clinical sense and for hyperadrenergic POTS, a beta blocker makes sense.

Neuropathic POTS occurs when there are diseased small fibers, which can happen with diabetes, rheumatoid arthritis, lupus, and Sjogren’s syndrome and usually has some degree of autoimmunity, but may not necessarily occur in small fiber neuropathy.

While small fiber biopsy is the gold standard to diagnose this form of POTS, we have used psuedomotor testing as an alternative.

The end result, whether the dysautonomia is due to sympathetic overdrive or parasympathetic dysfunction is poor perfusion to the brain, leading to dizziness, syncope, vision and hearing loss, tinnitus, and brain fog.

With Sympathetic overdrive, which is a major compensation mechanism, the patient has a racing heart, insomnia, excessive sweating, high anxiety, and exacerbation of brain fog from reduced cerebral blood flow from hyperventilation. This may also explain the palpitations a person feels with dysautonomia.

 

Read More
Ehlers-Danlos Syndrome

Ehlers-Danlos Syndrome (EDS) and Autonomic Dysfunction

Click here to download this post

Autonomic Nervous System Dysfunction in Ehlers-Danlos Syndrome

by Nicholas DePace MD, FACC, and Michael Edward Goldis DO, FACOI, MS, BS in Pharm

The autonomic nervous system (ANS) runs all background bodily functions that do not require a conscious thought process. Major consequences of autonomic dysfunction include abnormal and inappropriate blood volume and flow distribution to the body with gravitational pooling and difficulty returning blood to the heart.

Direct nerve dysfunction can affect pupil size and abnormal motility of the gastrointestinal (GI) tract, compensations which are adaptive mechanisms in the body’s attempt to compensate for autonomic dysfunction, which can cause adverse symptoms. There are 2 components: (1) the sympathetic nervous system, which releases predominantly norepinephrine and is the “accelerator” of the body; (2) the parasympathetic nervous system releases acetylcholine which is the “break” of the body.

The vagus nerve is the main component of the parasympathetic nervous system and is the longest nerve in the body. Because of its long distribution and size, it is susceptible to injury.

Impairment of blood flow to the brain, which is poor perfusion, leads to lightheadedness, tunnel vision, blackout vision, change in hearing, perception, complete loss of consciousness, syncope, presyncope, the need to lie down, giddiness, word-finding difficulties, and short term memory loss.

These occur in the standing position almost always or occasionally sitting, but not lying. These symptoms are known as orthostatic intolerance. Mental cloudiness and brain fog are described.

Lack of perfusion to the brain may precipitate migraines. Light intolerance, photophobia, bothersome sensation to loud noises, anxiety, insomnia, and depression may or may not reflect poor cerebral perfusion.

Ehlers Danlos Syndrome is often associated with GI motility and may be associated with mast cell activation. What the mast cells do is release histamine inflammatory mediators. This accounts for the overlapping features not EDS like abdominal pain and poor GI motility with foggy thinking.

There is an article in the New England Journal of Medicine that feels irritable bowel syndrome (IBS) is the result of a histamine abnormality. What the actual cause is controversial.

While some physicians believe there’s a component of autoimmunity, we believe there is an abnormal connective tissue in the veins precipitating the venous pooling phenomenon, there is poor cerebral perfusion, and Sympathetic overdrive leading to dysautonomia.

There may also be an anatomical component to the autonomic dysfunction when you consider the vagus nerve is a parasympathetic nerve and the most prominent and longest in the parasympathetic nervous system.

It is the 10th cranial nerve and arises from the brain stem located auth the junction between the cranium and the first cervical vertebrae, which is also at the base of the cerebellum.

Any craniocervical instability in this region or compression of the vagus nerve could potentially have profound effects on vagus nerve function. Craniocervical instability is common in EDS and needs flexion and extension radiographic images and proper measurements to clearly characterize it.

The vagus nerve exits from this location along with the ninth cranial nerve, the glossopharyngeal nerve, and the eleventh cranial nerve which is known as the spinal accessory nerve.

The vagus nerve then branches throughout most of the body. The vagus is both afferent sensory and efferent motor. This sensory fiber for the vagus takes information from the GI tract and runs it back to the brain, while the motor activity directs the bodily functions in many organs.

Some physicians describe the enteric nervous system as an organism “second brain” which can function completely in the absence of central nervous system input. The vagus nerve as well as the parasympathetic nervous system in general uses the neurotransmitter acetylcholine to transmit information from the presynaptic nerve termination to the end organ.

There can be abnormalities from the brain to the ganglia or from the end receptors where acetylcholine is released. There are about 30 neurotransmitters within the enteric nervous system which include more than 90% of the body’s serotonin and 50% of the body’s dopamine.

Read More
Chronic Fatigue Syndrome 101

What is Chronic Fatigue Syndrome (CFS) 101

Click here to download this post

Dr. DePace, MD, FACC

Symptoms of Chronic Fatigue Syndrome

Chronic diseases usually last for over 6 months. In Chronic Fatigue, we see post-exertional fatigue, unrefreshing sleep, and “Brain Fog” ( memory and cognitive disturbances).

The Autonomic Nervous System (Parasympathetic and Sympathetic balance) is often abnormal in Chronic Fatigue Syndrome (CFS). This affects blood pressure (BP) and heart rate (HR) regulation.

That’s why we see Orthostatic Intolerance in most cases like Postural Orthostatic Tachycardia Syndrome (POTS). In this condition they experience worsening symptoms when are in an upright position and improve when they lie down. Females are more affected than males. As many as 8 million Americans may be affected. Patients are affected at different ages and have different presentations.

What Causes Chronic Fatigue Syndrome?

Chronic Fatigue Syndrome is a group of disorders that consists of many different causes. Let’s take them separately;

  1. Infection (viral or bacterial) that causes autoantibodies and oxidative stress to dysregulate cellular and specifically mitochondrial energetics. This may lead to exercise intolerance.
  2. Disturbed gut microbiota (abnormal bacterial colonization) possibly leading to “leaky-gut” leads to autoimmunity. Irritable Bowel Syndrome is seen in many Chronic Fatigue patients.
  3. Microglial activation of the nervous system, including the Central nervous System (CNS), possibly leading to chronic pain due to allodynia (pain due to stimuli that is usually not painful) and hyperalgesia (abnormally heightened sensitivity to pain).
  4. Neuronal inflammation is important in the pathophysiology of many disabling symptoms.
  5. High levels of pro inflammatory cytokines (chemicals produced by cells) and low level of antioxidants, such as Coenzyme Q-10 (CoQ10) or Glutathione
  6. Abnormalities of the Hypothalamus-Pituitary-Adrenal Axis possibly leading to “delayed cortisol awakening”, possibly leading to unrefreshing sleep. In some cases we see low cortisol levels. Cortisol is a hormone that helps the body handle stress.
  7. Physical or emotional trauma, including form an accident, concussion, immobilization, surgery, trauma, or even emotional stress such as loss of a loved one.
  8. Genetics may contribute, with identical twins having a higher incidence then fraternal twins. There has also been familial aggregations note of CFS.
  9. Environmental factors like mold or toxins may also be a triggers.

While mitochondrial dysfunction is implicated as an immediate cause of CFS, it is not determined what the damage to mitochondrial function is from.

Mitochondria are components of cells that are called organelles and they produce energy in the form of a molecule called ATP. Cellular hypoxia and oxidative stress happen during stressful situations.

Treatments For Chronic Fatigue Syndrome

The end result is disturbing muscle and nerve function. Exercise is the hallmark treatment for improving CFS. “Low and slow” exercise is where patients exercise 2-5 minutes followed by 5 minutes of rest so as not to damage skeletal muscle. Another such exercise is walking slowly, no more than 2 MPH for 40 minutes daily.

Even if biking or rowing, no more than 2 MPH. This may be too stressful for some patients, who on some days cannot lift their heads off the pillow. Supine exercises can be used for them. More work is required to assess the types of exercise programs that are most effective.

Diets high in processed foods and full of chemicals may be a cause of CFS and should be avoided. Cocktails of antioxidants that work on the mitochondria and immune system modulation are current areas of investigation. Currently, we are working on ways to categorize the different patients to determine which treatments work best.

Read More

Autonomic Nervous System and EDS (Ehlers-Danlos Syndrome)

Click here to download this post

Dr. DePace, MD, FACC

49% of hypermobile EDS (Ehlers-Danlos Syndrome) patients have POTS (postural orthostatic tachycardia syndrome), 31% orthostatic intolerance and 20% have normal hemodynamics. We call this orthostatic intolerance and postural orthostatic intolerance  in joint hypermobility syndrome / Ehlers-Danlos  hypermobility type, neurovegetative dysregulation or autonomic failure. The autonomic dysregulation is moderate to severe in one-third of our hypermobile EDS patients.

Coat-hanger pain is common in orthostatic intolerance associated with EDS. Coat-hanger syndrome consists of pain at the back of the neck (paracervical) and base of the head (suboccipital) that worsens in the upright position. It is believed to be due to poor blood flow to the muscles of the upper back and neck. It is due to pooling of blood due to abnormal sympathetic nervous system response due to standing and abnormal vasoconstriction. Coat-hanger pain can be quite profound, especially in conjunction with all the other chronic pain seen in EDS patients due to joint hypermobility.

Orthostatic headaches are also seen in EDS due to blood vessel malformation called Chiari malformation, CSF (cerebral spinal fluid) flow issues and CSF leaks. This may collagen problems, leading to stretchy blood vessels in EDS leading to venous pooling. This hypothesis has not been proven; however it makes empiric sense.

Autonomic dysfunction has often been attributed to autoimmunity and many times autoimmune antibodies are not detected, and many believe that this is because they have not been discovered as of yet. Diseases like rheumatoid arthritis, lupus and Sjogren’s disease have been seen with EDS. Nearly 10% had Raynaud’s, which is often associated with autoimmune disorders. It is kissable that abnormalities in the extracellular matrix might contribute to development of autoimmunity in the presence of other genetic or environmental influences.

The most common autoimmune diseases associated with EDS and POTS are Hashimoto’s, Sjogren’s, lupus and celiac disease. However, POTS is not the only dysautonomia disorder that is seen in EDS patients.

Mast cell activation syndrome is often seen in patients who have autonomic dysfunction including POTS and EDS. POTS and mast cell activation syndrome may frequently overlap. POTS patients with EDS tend to report dealing with POTS-like symptoms for most of their life. GI (gastrointestinal) are reported significantly more often by patients with EDS. Sensory neuropathic symptoms have been reported significantly more often in patients with EDS with POTS, including skin burning, hand tingling, hand burning, hand numbness and cold hands. The neuropathy noted in EDS patients suggests that the collagen in and around the nerve fibers may be damaged or abnormal.

Small fiber neuropathy in hypermobile EDS patients likely cause the burning sensations, hypesthesia and allodynia. Small fiber neuropathy refers to dysfunction or damage to the A-Delta and C fibers which relay thermal and nociceptive or unpleasant information as well as mediating autonomic function. There is strong evidence for a peripheral neuropathic contribution to the pain syndrome in hypermobile disorders in addition to the known nociceptive and central sensitization components. This raises the question if there is a neurological cause of hypermobile EDS; the only EDS syndrome without a known genetic cause. Physicians should assess for small fiber pathology in hypermobile EDS patients and hypermobility spectrum disorder patients for sensory and autonomic impact. EDS patients show an overactivity of the resting parasympathetic nerve tone and a decreased sympathetic nerve reactivity to stimuli.

 

Read More